4RealSim Your Expert CAE Partner

Material calibration Urea freezing simulations

4RealSim Services

ENGINEERING SERVICES

Your Expert CAE Partner

4RealSim Inergy Automotive Systems Research

Material calibration Urea freezing simulations

Introduction

- Material behavior of a Polymer (material name is confidential)
- Physical tests (creep) performed in 2006
- Still no correlated material model today

 Unstable UMAT used for supposedly nonlinear viscoelastic-plastic behavior
- Request to 4RealSim
 - Obtain calibrated material data with the new PRFmodel (nonlinear viscoelasticity) in 6.13

Simple 1-element model with the nonlinear viscoelastic material model

** MATERTALS * * *Material, name=prf-fit *Hyperelastic, neo hooke, moduli=instantaneous 0.1 0.01*Viscoelastic, nonlinear, networkid=1, sratio=1, law=strain х× A, n, m $A \ge 0$, n > 0, -1 < m < 0

Fit-parameters

Your Expert CAE Partner

- Simple 1-element model with the nonlinear viscoelastic material model
- Automate and optimize the simulation process with Isight

Your Expert CAE Partner

Value of parameter A can vary orders of magnitude log(A) used instead

Compare simulation with test results

Your Expert CAE Partner

Copyright 4RealSim 2013

8

4 different creep tests (different stress levels); so 4 different analyses?

Token usage and runtime optimized by merging the 4 analyses into 1...

Your Expert CAE Partner

Token usage and runtime optimized by merging the 4 analyses into 1

Different load to every element

Independent postprocessing of every element

- Simple 1-element model with the nonlinear viscoelastic material model
- Automate and optimize the simulation process with Isight
- Calibrate material model to minimize error between simulation and test

Your Expert CAE Partner

Initial result from PRF-model

- Simple 1-element model with the nonlinear viscoelastic material model
- Automate and optimize the simulation process with Isight
- Calibrate material model to minimize error between simulation and test
- Simpler material model?

• Simpler material model?

```
** MATERIALS
**
*Material, name=prf-fit
*Hyperelastic, neo hooke, moduli=instantaneous
u, 0.01
*Viscoelastic, time=prony
x1, ,x2
y1, ,y2
z1, ,z2
```

- Automate simulation process with Isight
- Calibrate material model to minimize error between simulation and test

Copyright 4RealSim 2013

Conclusion

- Efficient Isight methodology and Abaqus workflow developed
 - Robust calibration process
- Simple Abaqus material model fitted to testdata
 - Replaces the unstable UMAT
- Inergy is generalizing and deploying the calibration process to production sites (non-experts)
 - Automatic smoothing via Abaqus/CAE
 - Automatic calibration via Isight

Isight Advanced Training Material

<u>http://4realsim.com/services/advanced-isight-workshop/</u>

Your Expert CAE Partner

4RealSim Inergy Automotive Systems Research

Material calibration Urea freezing simulations

Introduction

- Selective Catalytic Reduction
 - Converts NO_x into N_2 and H_2O
 - Urea water solution as reducing agent
 - Powerfull emission reduction technique in automotive industry
 - Thermal engineering is a challenge
 - Melting/freezing point in range of ambient temperatures of typical usage

Introduction

- Freezing Test
 - Target
 - Verify if tank and its components pass freezing test (without observing failure or leakage)
 - Procedure
 - Tank filled with Adblue (100% of volume)
 - Climatic room conditioned at -40°C
 - Issues
 - Cracks, failure and leakage
- Simulation
 - Target
 - Compute shape evolution of the freezing front with time
 - Predict the last freezing area ("liquid bubble")
 - Value
 - Detect which tanks can cause potential issues during freezing test
 - Test and validate design modifications of tank
 - Identify areas where to put insulation to move last liquid bubble

Step 1 HDPE cylinder thermal

- Cylinders
 - Volume 4,2 l (filled at 80%)
- Initial temperature of 22°C
- Cooling to -40°C (24 hours)
- Goal
 - Develop and validate thermal model on simple case of SCR tank

Your Expert CAE Partner

Thermal model of cylinder

- Axisymmetric thermal model
 - Initial temperature of 30°C
 - Cooling to -40°C
 - Film condition outside of tank

Thermal model of cylinder

- Temperature dependent material properties
 - Difference in specific heat and thermal conductivity below and above melting point.
 - Effect of phase transition accounted for by 'latent heat'
 - Natural convection accounted for by adjusting thermal conductivity of liquid urea and air
 - Fitting of simulation results onto test results

2

Thermal results

Pot 8 after 72320 [s], Simulation after 21920 [s]

Pot 1 after 85080 [s], Simulation after 34680 [s]

Your Expert CAE Partner

Step 1 Conclusion

- A thermal freezing model has been developed
- Numerical parameters such as material properties and heat transfer coefficient have been calibrated
- Mechanism of freezing and the influence of each
 parameter is understood
- Tuned simulation results in agreement with experiment

Step 2 HDPE cylinder structural

- Axisymmetric structural model
 - Armaflex ignored not significant for mechanical response
 - Temperature mapped from thermal results
 sequentially coupled
 - Contact between tank and urea, frictionless for liquid urea
 - Boundary condition at single bottom node

Step 2 HDPE cylinder structural

- Temperature dependent material properties
 - Urea modeled as elastic-plastic
 - Large yield stress for frozen urea (=elastic)
 - Perfectly plastic with low yield stress for liquid urea
 - Difference in TEC below and above melting point
 - Definition of TEC includes 5% volume increase due to freezing

Mechanical results

Animation of temperature and deformation

Step 3 Real SCR tanks

Pictures removed due to confidentiality

Your Expert CAE Partner

Step 3 Real SCR tanks

Pictures removed due to confidentiality

Your Expert CAE Partner

Conclusion

- Continuum heat transfer and structural analyses easy to set-up, quick result
- Robust computation demonstrated on actual SCR tank
- Quite accurate results
- This simulation methodology is deployed at the production sites and has been used on various tank models

