Course objectives
Upon completion of this course you will be able to:

- Define general contact and contact pairs
- Define appropriate surfaces (rigid or deformable)
- Model frictional contact
- Model large sliding between deformable bodies
- Resolve overclosures in interference fit problems
- Understand how nonlinear problems are solved in Abaqus
- Develop Abaqus models that will converge
- Identify modeling errors that cause models to experience convergence difficulties
- Recognize when a problem is too difficult or too ill-posed to be solved effectively

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus

3 days
Day 1

- Lecture 1 Introduction to Nonlinear FEA
- Lecture 2 Nonlinear FEA with Abaqus/Standard
 - Workshop 1 Nonlinear Spring
- Lecture 3 Solution of Unstable Problems
 - Workshop 2 Reinforced Plate Under Compressive Loads
- Lecture 4 Why Abaqus Fails to Converge
 - Workshop 3 Crimp Forming Analysis
Day 2

- Lecture 5 Convergence Problems: Element Behavior
 - Workshop 4 Element Selection
- Lecture 6 Convergence Problems: Constraints and Loading
- Lecture 7 Convergence Problems: Materials
 - Workshop 5 Limit Load Analysis
 - Workshop 6 Ball Impact (optional)
- Lecture 8 Contact Workflow
 - Workshop 7 Compression of a Rubber Seal
Day 3

- Lecture 9 Surface-based Contact
 - Workshop 8 Lap Joint Analysis
- Lecture 10 Contact Properties
 - Workshop 9 Disk Forging Analysis
- Lecture 11 Interference Fits
 - Workshop 10 Interference Fit Analysis
 - Workshop 11 Syringe Analysis (optional)
- Lecture 12 Modeling Tips
 - Workshop 12 Snap Fit Analysis
 - Workshop 13 Analysis of a Radial Shaft Seal (optional)
Additional Material

- Appendix 1 Node-to-Surface Formulation
- Appendix 2 Contact Elements
- Appendix 3 Dynamic Contact using Implicit Integration
- Appendix 4 Contact Logic and Diagnostics Tools
 - Workshop 14 Bolted Flange Analysis
 - Workshop 15 Bolted Flange Analysis: Infinitesimal Sliding
 - Workshop 16 Contact: Beam Lift-Off
 - Workshop 17 Contact: Stabilization
- Appendix 5 Additional Contact Features
 - Workshop 18 Pipe Reel Analysis
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

Portfolio of established, best-in-class products
- Abaqus, Isight, Tosca, fe-safe, Simpack

* Included in extended licensing pool
<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abaqus</td>
<td>- Routine and Advanced Simulation</td>
</tr>
<tr>
<td></td>
<td>- Linear and Nonlinear, Static and Dynamic</td>
</tr>
<tr>
<td></td>
<td>- Thermal, Electrical, Acoustics</td>
</tr>
<tr>
<td></td>
<td>- Extended Physics through Co-simulation</td>
</tr>
<tr>
<td></td>
<td>- Model Preparation and Visualization</td>
</tr>
<tr>
<td>Isight</td>
<td>- Process Integration</td>
</tr>
<tr>
<td></td>
<td>- Design Optimization</td>
</tr>
<tr>
<td></td>
<td>- Parametric Optimization</td>
</tr>
<tr>
<td></td>
<td>- Six Sigma and Design of Experiments</td>
</tr>
<tr>
<td>Tosca</td>
<td>- Non-Parametric Optimization</td>
</tr>
<tr>
<td></td>
<td>- Structural and Fluid Flow Optimization</td>
</tr>
<tr>
<td></td>
<td>- Topology, Sizing, Shape, Bead Optimization</td>
</tr>
<tr>
<td>fe-safe</td>
<td>- Durability Simulation</td>
</tr>
<tr>
<td></td>
<td>- Low Cycle and High Cycle Fatigue</td>
</tr>
<tr>
<td></td>
<td>- Weld, High Temperature, Non-metallics</td>
</tr>
<tr>
<td>Simpack</td>
<td>- 3D Multibody Dynamics Simulation</td>
</tr>
<tr>
<td></td>
<td>- Mechanical or Mechatronic Systems</td>
</tr>
<tr>
<td></td>
<td>- Detailed Transient Simulation (Offline and Realtime)</td>
</tr>
</tbody>
</table>

Realistic Human Simulation
- High Speed Crash & Impact
- Noise & Vibration

Material Calibration
- Workflow Automation
- Design Exploration

Conceptual/Detailed Design
- Weight, Stiffness, Stress
- Pressure Loss Reduction

Safety Factors
- Creep-Fatigue Interaction
- Weld Fatigue

Complete System Analyses
- (Quasi-)Static, Dynamics, NVH
- Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation
Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Insight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning.

SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.
The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2016

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th>Lecture 1</th>
<th>11/16</th>
<th>Updated for Abaqus 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 2</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workshop 1</th>
<th>11/16</th>
<th>Updated for Abaqus 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop 2</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 5</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 6</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 7</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 8</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 9</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 10</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 11</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 12</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 13</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 14</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 15</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 16</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 17</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 18</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
</tbody>
</table>
Lesson 1: Introduction to Nonlinear FEA

Lesson content:

- Why Use FEA to Solve Mechanics Problems?
- What is Convergence?
- When is a Problem Nonlinear?
- Properties of Linear Problems in Mechanics
- Properties of Nonlinear Problems in Mechanics
- Numerical Techniques for Solving Nonlinear Problems
Lesson content:

- Equilibrium Revisited
- Nonlinear Solution Methods
- Abaqus/Standard Convergence Criteria: An Overview
- Automatic Time Incrementation
- Contact Convergence
- Workshop Preliminaries
- Workshop 1: Nonlinear Spring (IA)
- Workshop 1: Nonlinear Spring (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

1.5 hours
Lesson 3: Solution of Unstable Problems

Lesson content:

- Unstable Quasi-Static Problems
- Globally Unstable Problems
- Stabilization of Local Instabilities
- Symptoms of Local Instability
- Automated Viscous Damping
- Implicit Dynamics
- Examples
- Stabilization of Initial Rigid Body Motion
- Workshop 2: Reinforced Plate Under Compressive Loads (IA)
- Workshop 2: Reinforced Plate Under Compressive Loads (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

2.5 hours
Lesson 4: Why Abaqus Fails to Converge

Lesson content:

- The Basic Problems
- Understanding the Warning Messages
- Helping Abaqus Find a Converged Solution
- Workshop 3: Crimp Forming Analysis (IA)
- Workshop 3: Crimp Forming Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- Hourglassing in Reduced-Integration Elements
- Checkerboarding
- Ill-Conditioning
- Workshop 4: Element Selection (IA)
- Workshop 4: Element Selection (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- General Remarks
- Overconstraints Detected during Model Processing
- Overconstraints Detected during Analysis Execution
- Controlling the Overconstraint Checks
- Example: Four-bar Linkage
- Nonconservative Loads
Lesson 7: Convergence Problems: Materials

Lesson content:

- Large Strains and Linear Elasticity
- Unstable Material Behavior
- Example: Plate with a Hole
- Unsymmetric Material Stiffness
- Example: Concrete Slump Test
- Workshop 5: Limit Load Analysis (IA)
- Workshop 5: Limit Load Analysis (KW)
- Workshop 6: Ball Impact (IA)
- Workshop 6: Ball Impact (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

1.5 hours
Lesson 8: Contact Workflow

Lesson content:

- Defining Contact Pairs
- Defining Surfaces for Contact Pairs
- Defining General Contact
- Workshop Preliminaries
- Workshop 7: Compression of a Rubber Seal (IA)
- Workshop 7: Compression of a Rubber Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- Contact Formulations
- Contact Discretization
- Contact Enforcement Methods
- Relative Sliding Between Bodies
- Contact Output
- Summary
- Workshop 8: Lap Joint Analysis (IA)
- Workshop 8: Lap Joint Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 10: Contact Properties

Lesson content:

- Pressure-Overclosure Models
- Friction Models
- Friction Enforcement
- Workshop 9: Disk Forging Analysis (IA)
- Workshop 9: Disk Forging Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- Initial Overclosure
- Strain-free Adjustments
- Interference Fit Problems
- Interference Fit Techniques for General Contact
- Interference Fit Techniques for Contact Pairs
- Interference Fit Example
- Precise Specification of Clearances
- Geometric Smoothing for Curved Surfaces
- Workshop 10: Interference Fit Analysis (IA)
- Workshop 10: Interference Fit Analysis (KW)
- Workshop 11: Syringe Analysis (IA)
- Workshop 11: Syringe Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- Initial Rigid Body Motion
- Overconstraint
- Contact with Quadratic Elements
- Unsymmetric Matrices in Finite-Sliding Problems
- Dynamic Instabilities
- Modeling Corners and Edges
- Workshop 12: Snap Fit Analysis (IA)
- Workshop 12: Snap Fit Analysis (KW)
- Workshop 13: Analysis of a Radial Shaft Seal (IA)
- Workshop 13: Analysis of a Radial Shaft Seal (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Appendix 1: Node-to-Surface Formulation

Appendix content:

- Discretization
- Finite Sliding: Surface Considerations
- Small Sliding Characteristics
- Small Sliding: Local Contact Plane
- Small Sliding: Surface Considerations
Appendix 2: Contact Elements

Appendix content:

- Surface-Based vs. Contact Element Approach
- Contact Elements
- Contact Element Output
- Contact Element Visualization
Appendix 3: Dynamic Contact using Implicit Integration

Appendix content:

- Time Integration Issues
- Implicit Dynamics
- Damping
- Impact Problems
Appendix 4: Contact Logic and Diagnostics Tools

Appendix content:

- Newton Method
- The Contact Algorithm
- Contact Diagnostics: Visual
- Contact Diagnostics: Text
- Workshop 14: Bolted Flange Analysis (IA)
- Workshop 14: Bolted Flange Analysis (KW)
- Workshop 15: Bolted Flange Analysis: Infinitesimal Sliding (IA)
- Workshop 15: Bolted Flange Analysis: Infinitesimal Sliding (KW)
- Workshop 16: Contact: Beam Lift-Off (IA)
- Workshop 16: Contact: Beam Lift-Off (KW)
- Workshop 17: Contact: Stabilization (IA)
- Workshop 17: Contact: Stabilization (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Appendix 5: Additional Features

Appendix content:

- Beam Contact
- Tie Constraints
- Rigid Bodies and Contact
- Analytical Rigid Surfaces
- Pre-Tensioning of Cross-Sections
- Pressure Penetration
- Contact in Linear Perturbation Procedures
- Workshop 7: Pipe Reel Analysis (IA)
- Workshop 7: Pipe Reel Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.