Structural-Acoustic Analysis with Abaqus

2017
Course objectives
Upon completion of this course you will be able to:
- Pure acoustics analysis
- Coupled structural-acoustic analysis
- Scattering and shock analysis
- Mesh size and mesh density effects for different analysis procedures
- Acoustic analysis output and postprocessing

Targeted audience
Simulation Analysts

Prerequisites
This course is recommended for engineers with experience using Abaqus. Some understanding of acoustics is helpful but is not required.
Day 1

- Lecture 1 Introduction
- Lecture 2 Acoustic Phenomena
- Lecture 3 Modeling Acoustic Problems Using Abaqus
 - Workshop 1 Acoustic Evaluation of a Simple Air Duct Section
 - Workshop 2 Acoustic Evaluation of a Small Vented Room
Day 2

- Lecture 4 Coupled Structural-Acoustic Analysis
 - Workshop 3 Truck Cab Acoustic Analysis
- Lecture 5 Acoustic Scattering and Shock
 - Workshop 4 Underwater Shock Analysis
- Lecture 6 Additional Examples
Additional Material

- Appendix 1 Acoustic Theory
SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions

- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack

Design Optimization, Tosca Structure *
- Simulation-driven design refinement to improve performance

FEA Stress Analysis, Abaqus *
- Detailed stress analysis using extracted load history from MBS

Multibody Simulation, Simpack
- System analysis to extract virtual load history of complete working cycle

Durability Assessment, fe-safe *
- Accurate life estimation to achieve certification

CAD Geometry, CATIA
- Fully parameterized 3D geometry; FEA model generation via associative interface

Mesh Calibration, Isight *
- Automated mesh calibration; sufficient mesh quality for accurate results

* Included in extended licensing pool
SIMULIA’s Power of the Portfolio

<table>
<thead>
<tr>
<th>Tool</th>
<th>Features</th>
</tr>
</thead>
</table>
| **Abaqus** | - Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization |
| **Isight** | - Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments |
| **Tosca** | - Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization |
| **fe-safe** | - Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics |
| **Simpack** | - 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime) |

Realistic Human Simulation
- High Speed Crash & Impact
- Noise & Vibration

Material Calibration
- Workflow Automation
- Design Exploration

Conceptual/Detailed Design
- Weight, Stiffness, Stress
- Pressure Loss Reduction

Safety Factors
- Creep-Fatigue Interaction
- Weld Fatigue

Complete System Analyses
- (Quasi-)Static, Dynamics, NVH
- Flex Bodies, Advanced Contact
Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?
Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!
SIMULIA SERVICES
PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

Training Schedule & Registration
We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer’s prior specification. To view the worldwide course schedule and to register for a course, visit the links below.
Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2016

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Date</th>
<th>Revision Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 3</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
<tr>
<td>Workshop 4</td>
<td>11/16</td>
<td>Updated for Abaqus 2017</td>
</tr>
</tbody>
</table>
Lesson 1: Introduction

Lesson content:

- Acoustic Problem Types Possible with Abaqus
- General Capabilities
- Examples
 - Weighted dB in Abaqus/Viewer
 - Sound transmission through a rubber door seal
 - Acoustic radiation of a muffler
 - Ship shock simulation
 - Tire design for noise reduction

45 minutes
Lesson 2: Acoustic Phenomena

Lesson content:

- Phenomena
- Governing Equations and Assumptions
- Acoustics Modeling
- Acoustics Terminology
- Useful Data and Definitions
- References

45 minutes
Lesson 3: Modeling Acoustic Problems Using Abaqus

Lesson content:

- Acoustic Properties
- Acoustic Element Types
- Loads
- Boundary Conditions
- Exterior Problems
- Exterior Problems using Impedance
- Exterior Problems using Infinite Elements
- Creating Acoustic Infinite Elements Using Abaqus/CAE
- Exterior Problems using Perfectly Matched Layers
- Acoustics with Mean Flow
- Analysis Procedures
- Output
- Acoustic Contribution Factors
- Maximum Element Size
- External Meshed Domains
- Parallel Execution
- Workshop Preliminaries
- Workshop 1: Acoustic Evaluation of a Simple Air Duct Section (IA)
- Workshop 1: Acoustic Evaluation of a Simple Air Duct Section (KW)
- Workshop 2: Acoustic Evaluation of a Small Vented Room (IA)
- Workshop 2: Acoustic Evaluation of a Small Vented Room (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

4.5 hours
Lesson 4: Coupled Structural-Acoustic Analysis

Lesson content:

- Introduction
- Near-Field and Far-Field Effects
- Fully Coupled Analysis
- Sequentially Coupled Analysis
- Acoustic-to-Structural Submodeling
- Coupled Acoustic-Structural Substructures
- Boundary Impedances
- Creating ASI elements on geometry
- Creating ASI elements on orphan meshes
- Workshop 3: Workshop 3: Truck Cab Acoustic Analysis (IA)
- Workshop 3: Workshop 3: Truck Cab Acoustic Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson 5: Acoustic Scattering and Shock

Lesson content:

- Acoustic Scattering and Shock with Abaqus
- Incident Wave Loading
- UNDEX Loading
- UNDEX Example Problem
- Air Blast Loading
- Workshop 4: Underwater Shock Analysis (IA)
- Workshop 4: Underwater Shock Analysis (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.
Lesson content:

- Sloshing
- Acoustics in Fibrous Materials
- Simple Expansion Muffler with Mean Flow
- Harmonic Distortion
- Effect of Surface Treatments on Room Acoustics
- Nonlinear Structural Behavior
- Coupled Piezoelectric and Acoustic Analysis
- Acoustics of a Truck Cab: Fully Coupled Analysis
- Acoustics of a Truck Cab: Sequential Analysis
- Summary
Appendix 1: Acoustic Theory

Appendix content:

- Governing Equations
- Properties of an Acoustic Medium
- Loads