

Modeling Contact with Abaqus/Standard

Abaqus 2020

About this Course

Course objectives

Upon completion of this course you will be able to:

- Define general contact and contact pairs
- Define appropriate surfaces (rigid or deformable)
- Model frictional contact
- Model large sliding between deformable bodies
- ▶ Resolve overclosures in interference fit problems

Targeted audience

Simulation Analysts

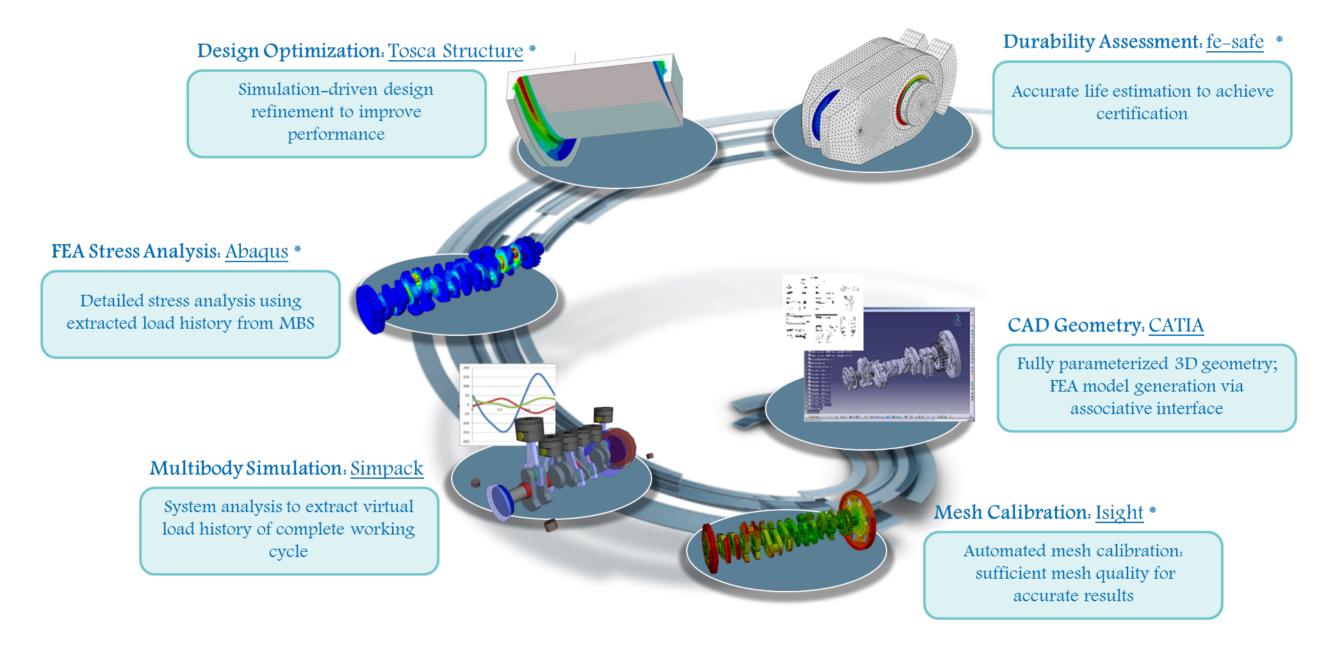
Prerequisites

This course is recommended for engineers with experience using Abaqus/Standard

Day 1

- ▶ Lesson 1 Introduction
- Lesson 2 Contact Workflow
 - Workshop 1 Compression of a Rubber Seal
- ▶ Lesson 3 Surface-based Contact
 - Workshop 2 Lap Joint Analysis
- Lesson 4 Contact Logic and Diagnostics Tools
 - Workshop 3 Bolted Flange Analysis

Day 2

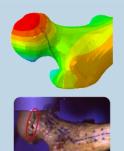

- Lesson 5 Contact Properties
 - Workshop 4 Disk Forging Analysis
- Lesson 6
 Interference Fits
 - Workshop 5 Interference Fit Analysis
 - Workshop 6 Syringe Analysis (optional)
- Lesson 7 Additional Features
 - Workshop 7 Pipe Reel Analysis
- ▶ Lesson 8 Modeling Tips
 - Workshop 8 Bolted Flange Analysis: Infinitesimal Sliding
 - Workshop 9 Snap Fit Analysis
 - Workshop 10 Analysis of a Radial Shaft Seal (optional)

Additional Material

- Appendix 1 Node-to-Surface Formulation
- Appendix 2 Contact Elements
- Appendix 3 Dynamic Contact using Implicit Integration

SIMULIA

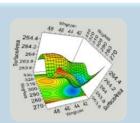
- SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions
- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe, Simpack



^{*} Included in extended licensing pool

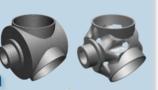
SIMULIA's Power of the Portfolio

Abaqus


- Routine and Advanced Simulation
- Linear and Nonlinear, Static and Dynamic
- Thermal, Electrical, Acoustics
- Extended Physics through Co-simulation
- Model Preparation and Visualization

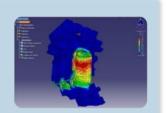
Realistic Human Simulation High Speed Crash & Impact Noise & Vibration

Isight


- Process Integration
- Design Optimization
- Parametric Optimization
- Six Sigma and Design of Experiments

Material Calibration
Workflow Automation
Design Exploration

Tosca


- Non-Parametric Optimization
- Structural and Fluid Flow Optimization
- Topology, Sizing, Shape, Bead Optimization

Conceptual/Detailed Design Weight, Stiffness, Stress Pressure Loss Reduction

fe-safe

- Durability Simulation
- Low Cycle and High Cycle Fatigue
- Weld, High Temperature, Non-metallics

Safety Factors
Creep-Fatigue Interaction
Weld Fatigue

Simpack

- 3D Multibody Dynamics Simulation
- Mechanical or Mechatronic Systems
- Detailed Transient Simulation (Offline and Realtime)

Complete System Analyses (Quasi-)Static, Dynamics, NVH Flex Bodies, Advanced Contact

Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio?

Connect with peers to share knowledge and get technical insights

Go to www.3ds.com/slc to log in or join!

35 SIMULIA

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation

Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit 3ds.com/simulia-learning. Connect. Share. Spark Innovation.

SIMULIA Training

http://www.3ds.com/products-services/simulia/services/training-courses/

35 SIMULIA

SCHEDULE & REGISTRATION

SIMULIA SERVICES

SIMULIA ...

PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE.

SERVICES ...

Training Schedule & Registration

We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American

- > By Location
- > By Course

International

- > By Location
- > By Course

Live Online Training

> Full Schedule

Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2019

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.

Revision Status

Lesson 1	11/19	Updated for Abaqus 2020
Lesson 2	11/19	Updated for Abaqus 2020
Lesson 3	11/19	Updated for Abaqus 2020
Lesson 4	11/19	Updated for Abaqus 2020
Lesson 5	11/19	Updated for Abaqus 2020
Lesson 6	11/19	Updated for Abaqus 2020
Lesson 7	11/19	Updated for Abaqus 2020
Lesson 8	11/19	Updated for Abaqus 2020
Appendix 1	11/19	Updated for Abaqus 2020
Appendix 2	11/19	Updated for Abaqus 2020
Appendix 3	11/19	Updated for Abaqus 2020

Workshop 1	11/19	Updated for Abaqus 2020
Workshop 2	11/19	Updated for Abaqus 2020
Workshop 3	11/19	Updated for Abaqus 2020
Workshop 4	11/19	Updated for Abaqus 2020
Workshop 5	11/19	Updated for Abaqus 2020
Workshop 6	11/19	Updated for Abaqus 2020
Workshop 7	11/19	Updated for Abaqus 2020
Workshop 8	11/19	Updated for Abaqus 2020
Workshop 9	11/19	Updated for Abaqus 2020
Workshop 10	11/19	Updated for Abaqus 2020

Lesson 1: Introduction

Lesson content:

- General Considerations
- Surface-based Contact
- Contact Examples
- Ingredients of a Contact Model

Lesson 2: Contact Workflow

Lesson content:

- Defining General Contact
- Defining Contact Pairs
- Defining Surfaces
- Workshop Preliminaries
- Workshop 1: Compression of a Rubber Seal (IA)
- Workshop 1: Compression of a Rubber Seal (KW)

Lesson 3: Surface-based Contact

Lesson content:

- Contact Formulations
- Contact Discretization
- Contact Enforcement Methods
- Relative Sliding Between Bodies
- Contact Output
- Summary
- Workshop 2: Lap Joint Analysis (IA)
- Workshop 2: Lap Joint Analysis (KW)

Lesson 4: Contact Logic and Diagnostics Tools

Lesson content:

- Newton Method
- ▶ The Contact Algorithm
- Contact Diagnostics: Visual
- Contact Diagnostics: Text
- Workshop 3: Bolted Flange Analysis (IA)
- Workshop 3: Bolted Flange Analysis (KW)

Lesson 5: Contact Properties

Lesson content:

- Pressure-Overclosure Models
- Friction Models
- ▶ Friction Enforcement
- Workshop 4: Disk Forging Analysis (IA)
- Workshop 4: Disk Forging Analysis (KW)

Lesson 6: Interference Fits

Lesson content:

- Initial Overclosure
- Strain-free Adjustments
- Interference Fit Problems
- ▶ Interference Fit Techniques for General Contact
- Interference Fit Techniques for Contact Pairs
- ▶ Interference Fit Example
- Precise Specification of Clearances
- ▶ Geometric Smoothing for Curved Surfaces
- Workshop 5: Interference Fit Analysis (IA)
- Workshop 5: Interference Fit Analysis (KW)
- Workshop 6: Syringe Analysis (IA)
- Workshop 6: Syringe Analysis (KW)

Lesson 7: Additional Features

Lesson content:

- Beam Contact
- Tie Constraints
- Rigid Bodies and Contact
- Analytical Rigid Surfaces
- Pre-Tensioning of Cross-Sections
- Pressure Penetration
- Contact in Linear Perturbation Procedures
- Initial Stresses for Contact
- Workshop 7: Pipe Reel Analysis (IA)
- Workshop 7: Pipe Reel Analysis (KW)

Lesson 8: Modeling Tips

Lesson content:

- Initial Rigid Body Motion
- Overconstraint
- Contact with Quadratic Elements
- Unsymmetric Matrices in Finite-Sliding Problems
- Dynamic Instabilities
- Modeling Corners and Edges
- Workshop 8: Bolted Flange Analysis: Infinitesimal Sliding (IA)
- Workshop 8: Bolted Flange Analysis: Infinitesimal Sliding (KW)
- Workshop 9: Snap Fit Analysis (IA)
- Workshop 9: Snap Fit Analysis (KW)
- Workshop 10: Analysis of a Radial Shaft Seal (IA)
- Workshop 10: Analysis of a Radial Shaft Seal (KW)

Appendix 1: Node-to-Surface Formulation

Appendix content:

- Discretization
- ► Finite Sliding: Surface Considerations
- Small Sliding Characteristics
- Small Sliding: Local Contact Plane
- ▶ Small Sliding: Surface Considerations

Appendix 2: Contact Elements

Appendix content:

- Surface-Based vs. Contact Element Approach
- Contact Elements
- Contact Element Output
- Contact Element Visualization

Appendix 3: Dynamic Contact using Implicit Integration

Appendix content:

- ▶ Time Integration Issues
- Implicit Dynamics
- Damping
- Impact Problems

