

Modeling Rubber and Viscoelasticity with Abaqus

Abaqus 2021

3DEXPERIENCE°

About this Course

Course objectives

Upon completion of this course you will be able to:

- Use experimental test data to calculate material constants
- Check the stability of the Abaqus material model at extreme strains
- Obtain the best possible material constants from the available test data
- Select elements for modeling rubber and foams
- Design an appropriate finite element mesh
- Model viscoelastic behavior in both the time and frequency domain
- Use a user subroutine to define the hyperelastic behavior

Targeted audience

Simulation Analysts

Prerequisites

This course is recommended for engineers with experience using Abaqus

Day 1

Lesson 1	Rubber Physics
Lesson 2	Introduction to Hyperelasticity Models
Lesson 3	Mechanical Testing
Workshop 1	Axial Deflection of a Rubber Bushing
Lesson 4	Defining Rubber Elasticity Models in Abaqus
Lesson 5	Modeling Issues and Tips
Workshop 2	Bead Seal Compression

Day 2

Lesson 6	Viscoelastic Material Behavior
Lesson 7	Time-Domain Viscoelasticity
Workshop 3	Bead Seal Relaxation
Lesson 8	Frequency-Domain Viscoelasticity
Workshop 4	Bead Seal Vibration
Lesson 9	Permanent Set in Solid Elastomers
Lesson 10	Anisotropic Hyperelasticity

Additional Material

- Appendix 1
 Finite Deformations
- Appendix 2 Rubber Elasticity Models: Mathematical Forms
- Appendix 3 Linear Viscoelasticity Theory
- Appendix 4 Harmonic Viscoelasticity Theory
- Appendix 5 Suggested Reading

SIMULIA

- SIMULIA is the Dassault Systèmes brand for realistic simulation solutions.
- Advanced simulation portfolio covering simulation disciplines such as structural mechanics, computational fluid dynamics and electromagnetic field simulation, for a true multiphysics simulation approach.

Join the Community!

Go to www.3ds.com/slc to log in or join!

WELCOME TO THE SIMULIA LEARNING COMMUNITY

Join the conversation

matter experts.

S SIMULIA

000000

SIMULIA COMMUNITY

BECOME PART OF A GLOBAL USER COMMUNITY FOCUSED ON ADVANCING THE USE OF SIMULIA SIMULATION SOLUTIONS IN SCIENCE AND ENGINEERING

Join Us

Interested in the latest in simulation? Looking for advice and best practices? Want to discuss simulation with fellow users and Dassault Systèmes experts?

The SIMULIA Community is the place to be.

Simply log in with your 3DS Passport username and password. If you use DSx Client Care for technical support, you can use these same credentials to access the community.

If you do not already have a 3DS Passport, you can register now. An account is free and access is Instant.

Stay up to date on the latest news

Modern Industry trends change rapidly, and SIMULIA is always developing its products to stay ahead. Follow the SIMULIA Community to be informed of new product releases and updates to the Knowledge Base, and to receive links to articles and blog posts about the latest industry trends.

Browse e-learning resources

The SIMULIA Community brings together learning materials covering numerous applications for SIMULIA products. Read a whitepaper on the benefits of simulation in your work, discover tips and tricks for using SIMULIA software efficiently, or watch a demonstration of how to use simulation to achieve your goals.

Start a discussion with other members of the SIMULIA Community. Talk through your burning simulation questions with peers, SIMULIA experts and SIMULIA Champions. Apply to be an author to create posts, share useful tips you've discovered for SIMULIA software and establish yourself as a thought-leader. The SIMULIA Community is home to both SIMULIA product users across the world, and to SIMULIA subject

SIMULIA Training

https://www.3ds.com/products-services/simulia/training/

35 SIMULIA

SIMULIA TRAINING

PROVIDING TRAINING SERVICES TO ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE

Simulation Training

SIMULIA and our education partners offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. The same courseware, and other content, is available for self-paced eLearning. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule, register for a course, or to learn more about our eLearning options, visit the links below.

SIMULIA DIRECT TRAINING

MENTORING

Instructor-lead training of both off-the-shelf materials and customized content based on your needs.

FIND A BUSINESS PARTNER 🖳

Mentoring consists of short-term engagements to accelerate the efficiency and effectiveness of your processes

SIMULIA has a large eco-system of education partners with certified instructors who also

SIMULIA ELEARNING RESOURCES

SIMULIA provides extensive eLearning solutions, published on various platforms, to enable:

Legal Notices

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2020

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the SIMULIA User Assistance.

Lesson 1	11/20	Updated for Abaqus 2021
Lesson 2	11/20	Updated for Abaqus 2021
Lesson 3	11/20	Updated for Abaqus 2021
Lesson 4	11/20	Updated for Abaqus 2021
Lesson 5	11/20	Updated for Abaqus 2021
Lesson 6	11/20	Updated for Abaqus 2021
Lesson 7	11/20	Updated for Abaqus 2021
Lesson 8	11/20	Updated for Abaqus 2021
Lesson 9	11/20	Updated for Abaqus 2021
Lesson 10	11/20	Updated for Abaqus 2021
Appendix 1	11/20	Updated for Abaqus 2021
Appendix 2	11/20	Updated for Abaqus 2021
Appendix 3	11/20	Updated for Abaqus 2021
Appendix 4	11/20	Updated for Abaqus 2021
Appendix 5	11/20	Updated for Abaqus 2021
Workshop 1	11/20	Updated for Abaqus 2021
Workshop 2	11/20	Updated for Abaqus 2021
Workshop 3	11/20	Updated for Abaqus 2021
Workshop 4	11/20	Updated for Abaqus 2021

Lesson 1: Rubber Physics

- Motivation
- Solid Rubber
 - Molecular structure
 - Material processing
 - Glass transition temperature
 - Nearly incompressible behavior
 - Typical stress-strain response
 - Hysteresis and damping
 - Damage
 - Anisotropy

- Thermoplastic Elastomers
 - Physical description
 - Advantages and disadvantages
- Rubber Foam
 - Physical description
 - Cellular structure
 - Typical stress-strain response
 - Poisson's effect
- The Nonlinear Elastic Assumption

Lesson 2: Introduction to Hyperelasticity Models

- Introduction
- Models for Nearly Incompressible Hyperelasticity
- Model for Foam Rubber Hyperelasticity

Lesson 3: Mechanical Testing

- Modes of Deformation
 - Uniaxial tension
 - Planar tension
 - Uniaxial compression
 - Equibiaxial tension
 - Confined compression
- Loading History
 - Testing at temperature
- Test Specimens
- Test Data Guidelines
- Testing for Time-Dependent Properties
- Workshop Preliminaries
- Workshop 1: Axial Deflection of a Rubber Bushing (IA)
- Workshop 1: Axial Deflection of a Rubber Bushing (KW)

Lesson 4: Defining Rubber Elasticity Models in Abaqus

- Curve-Fitting for Hyperelasticity of Nearly Incompressible Materials
- Material Stability
- Curve-fitting in Abaqus/CAE
- Choosing a Hyperelastic Model
- Augmenting Data
- Defining Hyperelastic Models
- Mullins Effect
- Hyperfoam Model
- UHYPER

Lesson 5: Modeling Issues and Tips

- Contact
- Element Selection
- Meshing Considerations
- Constraints and Reinforcements
- Instability
- Output Variables
- Using Abaqus/Explicit for Rubber Analyses
- Special Features
- Example: Column Shifter Boot
- Example: Weather Seal
- Workshop 2: Bead Seal Compression (IA)
- Workshop 2: Bead Seal Compression (KW)

Lesson 6: Viscoelastic Material Behavior

- Introduction
- Effects of Viscoelasticity
 - Creep
 - Stress relaxation
 - Damping and hysteresis
- Linear Viscoelasticity
- Finite-strain Nonlinear Viscoelasticity
- Temperature Dependence

Lesson 7: Time-Domain Viscoelasticity

Lesson content:

- Classical Linear Viscoelasticity
- Prony Series Representation
- Finite-Strain Linear Viscoelasticity
- Relaxation and Creep Test Data
- Prony Series Data
- Automatic Material Evaluation
- Time-Temperature Correspondence
- Usage Hints
- Finite-Strain Nonlinear Viscoelasticity
- Structural Relaxation in Glass
- Workshop 3: Bead Seal Relaxation (IA)
- Workshop 3: Bead Seal Relaxation (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

Lesson 8: Frequency-Domain Viscoelasticity

Lesson content:

- Frequency-Domain Response
- Storage and Loss Moduli
- Classical Isotropic Linear Viscoelasticity
- Frequency-Temperature Correspondence
- Isotropic Finite-Strain Viscoelasticity
- Procedures
- Workshop 4: Bead Seal Vibration (IA)
- Workshop 4: Bead Seal Vibration (KW)

Both interactive (IA) and keywords (KW) versions of the workshop are provided. Complete only one.

Lesson 9: Permanent Set in Solid Elastomers

- Motivation
- Defining Permanent Set
- ▶ Example
- Summary

Lesson 10: Anisotropic Hyperelasticity

- Motivation
- Models Available in Abaqus
- Examples

Appendix 1: Finite Deformations

Appendix content:

- Motions and Displacements
- Extension of a Material Line Element
- The Deformation Gradient
- Strain for Large Deformations
- Decomposition of a Deformation
- Principal Stretches and Principal Axes of Deformation
- Strain Invariants
- Deformation Example Simple Shear
- Summary

Appendix 2: Rubber Elasticity Models: Math. Forms

Appendix content:

- Energy Functions for Solid Rubbers (Isotropic)
 - Polynomial Model
 - Mooney-Rivlin Model
 - Reduced Polynomial Model
 - Neo-Hookean Model
 - Yeoh Model
 - Ogden Model
 - Marlow Model
 - Arruda-Boyce Model
 - Van der Waals Model
- Foam Rubber Model
- Mullins Effect

Appendix 3: Linear Viscoelasticity Theory

Appendix content:

Classical Linear Viscoelasticity

Appendix 4: Harmonic Viscoelasticity Theory

Appendix content:

- Classical Linear Viscoelasticity
- Harmonic Excitation

Appendix 5: Suggested Reading

Appendix content:

Suggested Reading

